The merge-and-shrink heuristic is a state-of-the-art admissible heuristic that is often used for optimal planning. Recent studies showed that the merge strategy is an important factor for the performance of the merge-and-shrink algorithm. There are many different merge strategies and improvements for merge strategies described in the literature. One out …
See more
The merge-and-shrink heuristic is a state-of-the-art admissible heuristic that is often used for optimal planning. Recent studies showed that the merge strategy is an important factor for the performance of the merge-and-shrink algorithm. There are many different merge strategies and improvements for merge strategies described in the literature. One out of these merge strategies is MIASM by Fan et al. MIASM tries to merge transition systems that produce unnecessary states in their product which can be pruned. Another merge strategy is the symmetry-based merge-and-shrink framework by Sievers et al. This strategy tries to merge transition systems that cause factored symmetries in their product. This strategy can be combined with other merge strategies and it often improves the performance for many merge strategy. However, the current combination of MIASM with factored symmetries performs worse than MIASM. We implement a different combination of MIASM that uses factored symmetries during the subset search of MIASM. Our experimental evaluation shows that our new combination of MIASM with factored symmetries solves more tasks than the existing MIASM and the previously implemented combination of MIASM with factored symmetries. We also evaluate different combinations of existing merge strategies and find combinations that perform better than their basic version that were not evaluated before.
See less