Most automated planners use heuristic search to solve the tasks. Usually, the planners get as input a lifted representation of the task in PDDL, a compact formalism describing the task using a fragment of first-order logic. The planners then transform this task description into a grounded representation where the task …
See more
Most automated planners use heuristic search to solve the tasks. Usually, the planners get as input a lifted representation of the task in PDDL, a compact formalism describing the task using a fragment of first-order logic. The planners then transform this task description into a grounded representation where the task is described in propositional logic. This new grounded format can be exponentially larger than the lifted one, but many planners use this grounded representation because it is easier to implement and reason about.However, sometimes this transformation between lifted and grounded representations is not tractable. When this is the case, there is not much that planners based on heuristic search can do. Since this transformation is a required preprocess, when this fails, the whole planner fails.To solve the grounding problem, we introduce new methods to deal with tasks that cannot be grounded. Our work aims to find good ways to perform heuristic search while using a lifted representation of planning problems. We use the point-of-view of planning as a database progression problem and borrow solutions from the areas of relational algebra and database theory.Our theoretical and empirical results are motivating: several instances that were never solved by any planner in the literature are now solved by our new lifted planner. For example, our planner can solve the challenging Organic Synthesis domain using a breadth-first search, while state-of-the-art planners cannot solve more than 60% of the instances. Furthermore, our results offer a new perspective and a deep theoretical study of lifted representations for planning tasks.
See less