Potential heuristics are a class of heuristics used in classical planning to guide a search algorithm towards a goal state. Most of the existing research on potential heuristics is focused on finding heuristics that are admissible, such that they can be used by an algorithm such as A* to arrive …
See more
Potential heuristics are a class of heuristics used in classical planning to guide a search algorithm towards a goal state. Most of the existing research on potential heuristics is focused on finding heuristics that are admissible, such that they can be used by an algorithm such as A* to arrive at an optimal solution. In this thesis, we focus on the computation of potential heuristics for satisficing planning, where plan optimality is not required and the objective is to find any solution. Specifically, our focus is on the computation of potential heuristics that are descending and dead-end avoiding (DDA), since these prop- erties guarantee favorable search behavior when used with greedy search algorithms such as hillclimbing. We formally prove that the computation of DDA heuristics is a PSPACE-complete problem and propose several approximation algorithms. Our evaluation shows that the resulting heuristics are competitive with established approaches such as Pattern Databases in terms of heuristic quality but suffer from several performance bottlenecks.
See less