The International Planning Competition (IPC) is a competition of state-of-the-art planning systems. The evaluation of these planning systems is done by measuring them with different problems. It focuses on the challenges of AI planning by analyzing classical, probabilistic and temporal planning and by presenting new problems for future research. Some …
See more
The International Planning Competition (IPC) is a competition of state-of-the-art planning systems. The evaluation of these planning systems is done by measuring them with different problems. It focuses on the challenges of AI planning by analyzing classical, probabilistic and temporal planning and by presenting new problems for future research. Some of the probabilistic domains introduced in IPC 2018 are Academic Advising, Chromatic Dice, Cooperative Recon, Manufacturer, Push Your Luck, Red-finned Blue-eyes, etc.This thesis aims to solve (near)-optimally two probabilistic IPC 2018 domains, Academic Advising and Chromatic Dice. We use different techniques to solve these two domains. In Academic Advising, we use a relevance analysis to remove irrelevant actions and state variables from the planning task. We then convert the problem from probabilistic to classical planning, which helped us solve it efficiently. In Chromatic Dice, we implement backtracking search to solve the smaller instances optimally. More complex instances are partitioned into several smaller planning tasks, and a near-optimal policy is derived as a combination of the optimal solutions to the small instances.The motivation for finding (near)-optimal policies is related to the IPC score, which measures the quality of the planners. By providing the optimal upper bound of the domains, we contribute to the stabilization of the IPC score evaluation metric for these domains.
See less